Industrial scale solar thermal energy: the opportunity in agri-processing

P.F. Janse van Vuuren

Solar heating in agri-processing workshop 17 November 2016 STIAS Stellenbosch

UNIVERSITEIT STELLENBOSCH UNIVERSITY

CENTRE FOR RENEWABLE & SUSTAINABLE ENERGY STUDIES

Motivation

Why we are here today

- South Africa has
 - Rising energy prices
 - Some of the greatest solar radiation on earth

Rising energy prices

Electricity price rising significantly faster than inflation (CPI)

Source: Own calculations based on NERSA tariff book and StatsSA CPI

Solar Energy

South Africa's untapped resource

- SA
 - $-1.055 MW_{th}$
- Austria

 3 541 MW_{th}
- Germany
 12 281MW_{th}

Source: Solargis

Motivation

Why we are here today

- South Africa has
 - Rising energy prices
 - Some of the greatest solar radiation on earth
- Agri-processing has
 - Significant energy demand for heat (79%)¹
 - Most of which is at low temperatures (less than 160 °C)²

1. Lamperia (2014) 2. AEE Intec (2009)

Motivation

Why we are here today

- South Africa has
 - Rising energy prices
 - Some of the greatest solar radiation on earth
- Agri-processing has
 - Significant energy demand for heat (79%)¹
 - Most of which is at low temperatures (less than 160 °C)²
- Solar thermal
 - Most efficient and economic at low temperature ranges (less than 160 °C)²
 - Financially feasible replacement of most fossil fuels³

1. Lamperia (2014) 2. AEE Intec (2009) 3. Joubert, Hess & Van Niekerk (2016)

*In the form of electromagnetic radiation from the infrared (long) to the ultraviolet (short) wavelengths

How solar thermal systems work

The basics

How solar thermal systems work

Solar collectors overview

How solar thermal systems work

In summary

- Ability to store energy is key selling point
- Most economic at low temperature applications (less 160°C)
 - Wide range of collectors that are applicable to different heat levels
 - Solar heat can be integrated in different ways
- Generally still in conjunction with traditional heat source
 - Rule of thumb: solar fraction of 60% in South Africa

i.e. 60% of energy per annum provided by solar thermal system

Why focus on agri-processing

- Agri-processing is highlighted as key sector for government support
 - Industrial Policy Action Plan (IPAP) by Department of Trade and Industry (dti)
 - Agripark programme of Department of Rural Development and Land Reform (DRDLR) & Department of Agriculture, Forestry & Fisheries (DAFF)
- Most of agri-processing heat is within the low temperature range (less 160°C)
 - Mostly warm water and some steam e.g. cleaning fats requires 65°C
 - Avoids losses from conversion

Why focus on agri-processing

Linking solar thermal and agri-processing

Adapted from Horta (2015)

Why focus on agri-processing

Industrial sectors and processes with the highest potential for solar heating

Industrial sector	Process	Temperature level (°C)
Food and beverages Milk products Fruits / vegetables / herbs Sugar Beer Fats / oils Chocolate / cacao / coffee Starch / potatoes / grain mill products Bread / biscuits / cakes Wine / beverage Meat Fish Aroma Baby-food	drying washing pasteurising boiling sterilising heat treatment	30 - 90 40 - 80 80 - 110 95 - 105 140 - 150 60 - 90

Source: Based on AEE Intec (2009) and Matrix of Industrial Processes (accessible online at: http://wiki.zero-emissions.at/)____

Energ	gy in food & beverages	Used for heat	Assume: 1) 50% supplement with solar thermal 2) 60% solar share				
DOE energy balance 2012	2.6 electricity	5.1 Petajoules of energy	425 GWh per annum				
		0.26 electricity	425 000 m ² of installations				
	4.8 gas	4.8 gas	110 922 CO ₂ e (tonne / annum)				
SATIM model energy use 2006	48.8 Petajoules of energy	35.2 Petajoules of energy	3 758 GWh per annum				
	15 electricity 1.4 gas	1.4 electricity 1.4 gas	3 758 000 m ² of installations				
	32.4 coal	32.4 coal	942 556 CO ₂ e (tonnes / annum)				
*Not to scale	<u>e</u>		GreenCape				

*Not to scale

Solar Thermal for Process Heat

South African Case Studies

Owner	Industry sector	Collector	Year	Gross area [m²]	Storage volume [litre]
BMW Manufacturing	Automobile	Evacuated tube	2012	200	24 200
Tanker Services, Imperial Logistics	Logistics	Evacuated tube	2013	67.5	5 000
Cape Brewing Company	Food & Beverage	Flat-plate	2015	120.6	10 000
Floraland	Flowers	Flat-plate	2012	288	20 000
ACA Threads	Rubber	Evacuated tube	2013	100	22 000
Fairview Cheese	Dairy	Evacuated tube	2012	90	4 000
Quality Filtration System	Water Treatment	Evacuated tube	2012	75	2 000

Source: Joubert, Hess & van Niekerk, 2016.

Solar Thermal Uptake

Drivers

- Rising energy prices
 - Solar thermal cost competitive to replace most fossil fuels¹
 - Financially viable opportunity to replace all fossil fuels (i.e. HFO, paraffin, electricity, diesel, petrol and LPG), except possibly not coal (at this stage)
 - For example, with zero cost increase in electricity,
 some projects could payback in less than 5 years when replacing
 electricity with solar thermal
 - Majority of fuels are linked to volatile oil price thus solar thermal allows better long term planning

GreenCape

1. Joubert, Hess & Van Niekerk (2016)

Solar Thermal Uptake

Drivers

- Rising energy prices
 - Solar thermal cost competitive to replace most fossil fuels
 - Majority of fuels linked to volatile oil price thus solar thermal allows better long term planning
- Greenhouse gas emission reduction potential
 - Carbon tax of R120 per tonne CO₂e awaiting cabinet approval
- Energy efficiency incentives
 - Section 12 income tax rebates (for large installations)
 - SOLTRAIN support
- Expansions
 - Agri-processing highlighted for support
 - Easier to integrate into new build thus lowering costs
- Innovative contracting solutions e.g. ESCOs¹
 - SANEDI ESCO register being launched

For all stakeholders

- Solar thermal has significant potential in agri-processing
 - $-425\ 000 3\ 758\ 000\ m^2$ of installations
 - 110 922 942 556 tCO₂e savings potential

For agri-processors

- Solar energy a viable opportunity:
 - Worth considering for all fossil fuels except possibly coal (at this stage)
 - Set to improve energy prices keep rising, proposed carbon tax
 - Installations already in existence (e.g. CBC next presentation)
- Best practice is in collaboration with energy efficiency
 - Ensures heat demands are optimised correctly as solar thermal long term solution
- Incentives and support available to encourage uptake
 - Residential and commercial buildings standards
 - Income tax rebates (large installations)
 - SOLTRAIN (presentation coming up)
- Opportunity of innovative contracting e.g. ESCos
 - SANEDI register being launched

For solar thermal industry

- Solar thermal industry 'infant industry'
 - Need to move along the learning curve for prices to drop
 - Agri-processing large opportunity (425 000 3 758 000 m² of installations)
- Solar not understood by energy users
 - Perceived to be untested Need clear and transparent communication about the costs,
 - Considered unreliable benefits and practical implications of these technologies
- Opportunity to overcome capital cost constraints with innovative contracting

 Ensure registered to be ESCO (<u>http://www.sanediesco.org.za/user/register</u>)
- Utilise industry support
 - e.g. income tax rebates as selling point large systems
 - SOLTRAIN training and support (presentation upcoming)

Thank you

Presenter:

Pieter Janse van Vuuren (pieter@greencape.co.za)

Project Team members: Lauren Basson (GreenCape) Karin Kirtzinger (CRSES) Ulrich Terblanche (CRSES) Manisha Gulati (WWF) Louise Scholtz (WWF)

UNIVERSITEIT STELLENBOSCH UNIVERSITY

CENTRE FOR RENEWABLE & SUSTAINABLE ENERGY STUDIES

References

- AEE Intec, 2009. *Thermal use of Solar Energy: SOLTRAIN training course for experts and professionals.* Stellenbosch, AEE Institute for Sustainable Technologies.
- DEADP, 2013. Energy Consumption and CO₂e emissions database for the Western Cape. [Online]: http://www.cityenergy.org.za/uploads/resource_108.pdf
- Horta, P., 2015. Process Heat Collectors: State of the Art and available medium temperature collectors. , SolarPaces Annex IV: IEA SHC Task 49
- Janse van Vuuren, P.F. 2015. Regional Resource Flow Project Social Accounting Matrix Analysis, available on request: GreenCape: Report to Funder
- Janse van Vuuren, P.F. 2015. Regional Resource Flow Project Wine Sector Report, available on request: GreenCape: Report to Funder
- Joubert, E., Hess, S. & Niekerk, J. V., 2016. Large-scale solar water heating in South Africa: Status, barriers and recommendations. Renewable Energy, Issue 97, pp. 809-822.
- Lampreia, J., 2014. Industrial renewable heat. [Online]

Available at: <u>https://www.carbontrust.com/news/2014/05/industrial-renewable-heat/</u> [Accessed 3 February 2016].

Mauthner, F., Weiss, W. & Spörk-Dür, M., 2016. Solar Heat Worldwide: Markets and Contribution to the Energy Supply 2014. [Online]: <u>http://www.ren21.net/wp-content/uploads/2016/06/GSR_2016_Full_Report_REN21.pdf</u>

Solar GIS. 2016. GHI solar maps. [Online]: http://solargis.com/products/maps-and-gis-data/free/overview/

Additional slides

For policy makers

- Agri-processing clearly supported
 - Agriparks & IPAP
 - Agriparks present opportunity to ensure development done sustainably
- Significant carbon savings of relevance to meet SA' commitments
 - 85% GHG emissions in South Africa from energy
 - Committed to 34% GHG reduction by 2020 & 42% by 2025 under Copenhagen Accord
- Solar thermal currently 'infant industry'
 - Justifies support for sector e.g. the income tax rebates
- Policy needs to clear and consistent
 - Unclear and sudden changes in policy have been damaging to industry in past
 - Considered unreliable
- SABS's systems testing is limiting
 - Component testing will enable more competition and growth (including local manufacture)
- Number of programmes working in solar space
 - Working together is key to preventing overlap and duplication

Solar Thermal Uptake

Barriers

- Relative Complexity
 - "Solar PV cables don't leak"
 - Solar thermal generates heat optimised for specific temperature
 - Stagnation in solar thermal systems could result in damage from steam build up
- Practical limitations
 - Available roof or floor space, considering shading etc.
 - Roof strengthening for retrofits increase cost
- High cost of solar thermal
 - Requirement for systems testing by SABS limits competition in solar water heater market
 - Makes installations more costly as parts need to be imported or certified overseas
 - Infant industry

Solar Energy Uptake

Specific investment costs and levelised costs of solar thermal generated heat for large pumped domestic hot water systems. Source: Solar Worldwide 2016

Solar Energy Uptake

CBC tender proposals with component breakdown (exchange rate ZAR/EUR = 15.3).

Table below graph shows calculated levelised costs of heat (LCOH), internal rate of return (IRR) and payback period. Source: Joubert, Hess & van Niekerk, 2016

Best Research-Cell Efficiencies

Collector Efficiency Curve

Tested power outputs of different collectors

		Milk products	Fruits / vegetabl es / herbs	Suga r	Bee r	Fats / oils	Chocola te / cacao / coffee	Starch/ potatoe s/grain produc ts	Bread / biscuit s / cakes	Wine / bevera ge	Mea t	Fish	Arom a	Baby- food	Solar integration	Emerging technologi es process intensificati on	Heat integrati on
Unit operation	Typical	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Cleaning	Cleaning of bottles & cases	√	√		√	√			N	√		√			√	V	
	Washing products	\checkmark	\checkmark					\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark
	Cleaning of production halls and equipment	V	V				√	V	V	V	V				\checkmark	N	V
Drying	Drying						√			√		\checkmark					\checkmark
Evaporatio n &	Evaporatio n	\checkmark	√	\checkmark	\checkmark	\checkmark	√								\checkmark		\checkmark
distillation	Distillation														\checkmark		\checkmark
	Deodorisati on					√	√								\checkmark		
Blanching	Blanching		\checkmark												\checkmark	\checkmark	\checkmark
Pasteurisa tion	Pasteurisati on	√	\checkmark		\checkmark				\checkmark	\checkmark					\checkmark	\checkmark	√*
Sterilisatio n	Sterilisation	\checkmark	\checkmark							\checkmark					\checkmark	\checkmark	\checkmark
Cooking	Cooking & boiling		\checkmark		\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			\checkmark	\checkmark	\checkmark
Other process heating	Pre-heating & process water	\checkmark	√		\checkmark				\checkmark								\checkmark
	Soaking		\checkmark		\checkmark		\checkmark				\checkmark						
	Thawing																
	Decling																

Unit operation	Typical processes	Milk products	Fruits / vegetabl es / herbs	Suga r	Bee r	Fats / oils	Chocola te / cacao / coffee	Starch / potato es / grain produc ts	Bread / biscuit s / cakes	Wine / bevera ge	Mea t	Fish	Arom a	Baby- food	Solar integration	Emerging technologi es process intensificati on	Heat integrati on
General process heating	Boiler feed- water preheating	\checkmark	\checkmark			\checkmark	\checkmark		\checkmark	\checkmark	V	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
Heating of productio n halls	Heating of production halls	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark					\checkmark		\checkmark	\checkmark		\checkmark
Cooling of productio n halls	Cooling of production halls	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark			\checkmark	\checkmark	\checkmark			\checkmark
Cooling processes	Cooling, chilling & cold stabilisatio n			\checkmark		\checkmark						\checkmark			\checkmark	\checkmark	\checkmark
	Ageing	\checkmark			\checkmark				\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark
Melting	Melting	\checkmark				\checkmark											\checkmark
Extracting	Extracting					\checkmark	\checkmark										\checkmark
Bleaching	Bleaching		\checkmark														\checkmark
Fermentati on	Fermentati on	$\sqrt{*}$			\checkmark				$\sqrt{*}$		\checkmark					\checkmark	
								Temperat	ture level								
20-40°C			N		N		\checkmark		V	V							
40-60°C			V		V	1	\checkmark		V	V	V		N				
0-80 °C		\checkmark	V	V	N	V	V	V	V	V			V				
> 80 °C		\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark							

Solar Thermal

International trend

Capacity [GW_{th}], Energy [TWh]

Global solar thermal capacity in operation [GW_{th}] Global solar thermal energy yield [TWh]

Source: Mauthner, F., Weiss, W. & Spörk-Dür, M., 2016

Solar Thermal

South African status quo

Total solar thermal systems (residential and industrial) to date 1 055MW_{th}

Source: Own calculations based on Solar Worldwide 2016